ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
R. S. Booth, R. H. Hartley, R. B. Perez
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 404-414
Technical Paper | doi.org/10.13182/NSE67-A28955
Articles are hosted by Taylor and Francis Online.
A technique is presented for conducting neutron-wave experiments in thermal-neutron systems using either a sinusoidally modulated or a pulsed source of thermal neutrons. A neutron source suitable for this experiment is described, data-accumulation criteria are presented, and the electrical systems used for collection are discussed. A specific experiment with graphite is reported and the discussion of data analysis is carried through the experimental determination of this system's dispersion law. It is found that, in general, a pulsed source of thermal neutrons is more suitable for neutron-wave experimentation than a sinusoidally modulated source. Confirmation is given to the theoretical prediction that diffusion and thermalization parameters can be measured by this technique over a relatively wide range of frequency without significant higher space- and energy-mode contamination. The values we obtained for the diffusion and thermalization parameters for graphite of density 1.60 g/cm3 were α0 ± 91. ± 1 sec−1, D0 = (2.16 ± 0.01) × 105 (cm2 sec−1), C0 = (39. ± 2) × 105 (cm4 sec−1), and F0 = (12. ± 2) × 107 (cm6 sec−1).