ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Keiichi Saito
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 384-396
Technical Paper | doi.org/10.13182/NSE67-A28953
Articles are hosted by Taylor and Francis Online.
Properties of the random noise source, which gives rise to inherent statistical fluctuations in nuclear reactors, have been studied under the assumption that the macrostochastic variables characterizing the state of the nuclear system follow the Markoffian random process. It has been found that the fundamental assumption leads to unified interpretation of phenomenological statements used repeatedly in the previous reactor-noise theory. They are: 1) the Langevin technique is to be applied; 2) the noise source is assumed to be white; 3) the Schottky formula is to be applied to determine the noise spectral density. Furthermore, the importance of the so-called Nyquist theorem is pointed out for establishing the Langevin method. The theorem shows that a generalized Einstein relation holds between the spectral density of the white-noise source and the linear constant operator describing the probable or expected kinetic behavior of nuclear systems. With the use of the relation, the noise spectral density has been classified into the binary and the single component. The latter comes from the fact that various nuclear reactions are of Poissonian nature, and produce the direct correlation term in the neutron field. The term is eliminated in the cross correlation function of the outputs of two detectors. The binary noise component, which comes from the branching processes and contributes to the count-rate fluctuations both for the one- and two-detector system of measurements, contains, however, the covariance of fluctuations of macrostochastic variables as unknowns. The complete determination of the noise source is accomplished with the use of the Smoluchowski consistency condition. The result offers a generalized Schottky formula. As an application, the space- and energy-dependent neutronic noise theory is treated in detail. Delayed neutrons are included from the outset. Applicability of the present theory to a slightly nonlinear system is suggested.