ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Richard Madey and Harold Shulman
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 353-358
Technical Paper | doi.org/10.13182/NSE67-A28949
Articles are hosted by Taylor and Francis Online.
A sevenfold integral expression is derived for the absorbed dose rate from the uncollided flux of gamma rays at the center of a spherical shell shield bombarded by an omnidirectional flux spectrum of protons. The general formulation is reduced to a fourfold integral on the basis of simplifying assumptions. This simpler formulation assumes that the gamma rays are produced isotropically by an isotropic proton flux, that protons penetrating the shell are not deflected from their original direction of incidence, that the spectrum and yield of photons are independent of proton bombarding energy, and that both the incident proton spectrum and the range-energy relation for protons in matter have power-law representations. A sixfold intergral expression is derived for the absorbed dose rate from the once-collided flux of gamma rays at the center of a spherical shell shield bombarded by an isotropic flux spectrum of protons. The once-collided differential (in energy) flux of photons at the shell center is given by a fivefold integral expression.