ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Richard Madey and Harold Shulman
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 353-358
Technical Paper | doi.org/10.13182/NSE67-A28949
Articles are hosted by Taylor and Francis Online.
A sevenfold integral expression is derived for the absorbed dose rate from the uncollided flux of gamma rays at the center of a spherical shell shield bombarded by an omnidirectional flux spectrum of protons. The general formulation is reduced to a fourfold integral on the basis of simplifying assumptions. This simpler formulation assumes that the gamma rays are produced isotropically by an isotropic proton flux, that protons penetrating the shell are not deflected from their original direction of incidence, that the spectrum and yield of photons are independent of proton bombarding energy, and that both the incident proton spectrum and the range-energy relation for protons in matter have power-law representations. A sixfold intergral expression is derived for the absorbed dose rate from the once-collided flux of gamma rays at the center of a spherical shell shield bombarded by an isotropic flux spectrum of protons. The once-collided differential (in energy) flux of photons at the shell center is given by a fivefold integral expression.