ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
J. H. Bennett
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 209-214
Technical Paper | doi.org/10.13182/NSE64-A28911
Articles are hosted by Taylor and Francis Online.
Discrete-ordinates methods for the solution of the mono-energetic transport equation in infinite slab and infinite cylindrical geometry are considered. A numerical method for each geometry is defined, and successive over-relaxation schemes for accelerating the convergence of iterative solutions to each approximate equation system are illustrated. Numerical evidence is given to show that the successive overrelaxation schemes have a considerably higher rate of convergence than the standard Gauss-Jacobi iterative schemes. For the method for cylinders, the evidence shows also that the use of the acceleration technique results in a factor of at least 2.0 improvement in the actual time required to solve a range of problems to given accuracy.