ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Paul F. Gast
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 196-202
Technical Paper | doi.org/10.13182/NSE64-A28909
Articles are hosted by Taylor and Francis Online.
A variational principle for resonance capture in heterogeneous reactors has been developed. The functional becomes the exact resonance integral when the flux is exact, and in general the functional also has the convenient form of an explicit resonance integral multiplied by a correction factor. A reasonable trial function for the adjoint is selected, which allows explicit, interpretable expressions to be derived for the correction factor when trial functions corresponding to the various currently used approximations are inserted. When solutions of Chernick-Rothenstein type equations are used for trial functions, the correction factor is unity. The inexactness in these equations is detectable only with higher-order approximations to the adjoint function. The correction factor for other approximations then furnishes a measure of the error as compared to exact solutions of C-R equations as a standard. Several applications are discussed.