ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Gerald P. Calame
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 189-195
Technical Paper | doi.org/10.13182/NSE64-A28908
Articles are hosted by Taylor and Francis Online.
Some diffusion parameters of water are computed with various thermal-neutron scattering laws. It is found that the diffusion cooling coefficient, in particular, is reasonably sensitive to the scattering law, but that the diffusion cooling coefficients predicted by the Radkowsky and Nelkin kernels are in fortuitious agreement. The coefficients computed for the Nelkin kernel, when treated in a manner consistent with the way in which experimental data are treated, are in reasonable agreement with the results of a recent experiment.