ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
M. N. Ozisik
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 164-171
Technical Paper | doi.org/10.13182/NSE64-A28905
Articles are hosted by Taylor and Francis Online.
Diffusion is an important mechanism in the transport and deposition of very small particles from gas streams to the surfaces of a conduit. Based on the heat/mass analogy, an analytical model has been formulated for the deposition of the precursor (i.e., the fission product that first enters the gas stream) and for its first and second daughter products from laminar, and turbulent gas streams under steady-state conditions. The model is strictly applicable to deposition in the isothermal regions; axial temperature gradients have been found to alter the deposition pattern. Activity deposited on the surfaces of a conduit has been correlated with this model both for the molecular and larger size particles (0.004 μ) assuming a perfect-sink condition at the wall surface. There is experimental evidence that wall surfaces do not always act as a perfect sink for the colliding particles; effects of an imperfect-retention scheme have been included in the analysis by introducing a factor for the effectiveness of the wall surfaces in retaining the particles. No rational evaluation of this factor is known. However, activity deposited on such surfaces can be correlated with the model developed if a suitable value is chosen for this factor.