ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
N. K . Ganguly, F. C. Cobb, A. W. Waltner
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 223-226
Technical Paper | doi.org/10.13182/NSE63-A28883
Articles are hosted by Taylor and Francis Online.
Measurements of the diffusion parameters of heavy water were made using a 1 Mev Van de Graaff accelerator utilizing the Be9(d, n) reaction under pulsed operation. The measurements were made at temperatures of 10°, 20°, 31°, 40°, and 50°C for buckling values ranging from 0.063 cm−2 to 0.100 cm−2. The decay of the neutron density was measured by a BF3 counter, located under the moderator container, in conjunction with a 26-channel time analyzer. The meanlife for each buckling was computed using Peierls' method; and values of the diffusion parameters were computed by the method of least squares. The value of the diffusion constant, (2.00 ± 0.04) × 105 cm2/sec at 10°C, agreed within the limits of experimental error with that found by Raievski and Horowitz, who used the modulated source method. The coefficient of the B4 term, usually referred to as the diffusion cooling coefficient, was found to be (3.72 ± 0.50) × 105 cm4/ sec as compared with (3.5 ± 0.8) × 105 cm4/sec as reported by Sjostrand in 1959.