ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
William A. Beyer
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 179-184
Technical Paper | doi.org/10.13182/NSE63-A28876
Articles are hosted by Taylor and Francis Online.
The elastic-plastic deformation of a long cylinder subjected to uniform heat generation Q is considered using Tresca's yield function and an associated flow rule for perfectly plastic material. The ends of the cylinder are assumed to be free and all elastic and thermal parameters temperature-independent. We suppose that the outer surface is insulated and that heat is removed from the inner surface. If Q is allowed to increase at a sufficiently slow rate so that time effects can be neglected, then yielding commences on the inner surface. For the Poisson ratio v = 0.3, immediately after initiation of yield two inner plastic regions and an elastic region form. One of the plastic regions corresponds to a singular regime of the Tresca yield function. The interfaces of the regions propagate outward as Q is increased. For outer to inner cylinder radius ratio equal to 5 it was found that, for Q about 4 times the value giving the initial plastic yielding, a third plastic region formed in the interior of the elastic region. The work was stopped at this point. The equations involved were solved numerically.