ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
William A. Beyer
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 179-184
Technical Paper | doi.org/10.13182/NSE63-A28876
Articles are hosted by Taylor and Francis Online.
The elastic-plastic deformation of a long cylinder subjected to uniform heat generation Q is considered using Tresca's yield function and an associated flow rule for perfectly plastic material. The ends of the cylinder are assumed to be free and all elastic and thermal parameters temperature-independent. We suppose that the outer surface is insulated and that heat is removed from the inner surface. If Q is allowed to increase at a sufficiently slow rate so that time effects can be neglected, then yielding commences on the inner surface. For the Poisson ratio v = 0.3, immediately after initiation of yield two inner plastic regions and an elastic region form. One of the plastic regions corresponds to a singular regime of the Tresca yield function. The interfaces of the regions propagate outward as Q is increased. For outer to inner cylinder radius ratio equal to 5 it was found that, for Q about 4 times the value giving the initial plastic yielding, a third plastic region formed in the interior of the elastic region. The work was stopped at this point. The equations involved were solved numerically.