ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
William A. Beyer
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 179-184
Technical Paper | doi.org/10.13182/NSE63-A28876
Articles are hosted by Taylor and Francis Online.
The elastic-plastic deformation of a long cylinder subjected to uniform heat generation Q is considered using Tresca's yield function and an associated flow rule for perfectly plastic material. The ends of the cylinder are assumed to be free and all elastic and thermal parameters temperature-independent. We suppose that the outer surface is insulated and that heat is removed from the inner surface. If Q is allowed to increase at a sufficiently slow rate so that time effects can be neglected, then yielding commences on the inner surface. For the Poisson ratio v = 0.3, immediately after initiation of yield two inner plastic regions and an elastic region form. One of the plastic regions corresponds to a singular regime of the Tresca yield function. The interfaces of the regions propagate outward as Q is increased. For outer to inner cylinder radius ratio equal to 5 it was found that, for Q about 4 times the value giving the initial plastic yielding, a third plastic region formed in the interior of the elastic region. The work was stopped at this point. The equations involved were solved numerically.