ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
W. W. Godsin
Nuclear Science and Engineering | Volume 8 | Number 4 | October 1960 | Pages 340-345
Technical Paper | doi.org/10.13182/NSE60-A28864
Articles are hosted by Taylor and Francis Online.
An irradiation capsule for high-temperature fuel irradiations has been developed to permit constant temperature control over a range of about ±35% of design power. Control is achieved by the variation in thermal conductivity of a binary gas mixture in a control annulus located between the test specimen and the capsule coolant. For the binary mixture, helium, which is a high-thermal conductivity gas, and a gas of lower conductivity, such as neon, nitrogen, or argon, may be used. The control method is unaffected by time or radiation damage. In-pile operation of capsules using this method of control has demonstrated that the desired temperature may be controlled to within ±25°F automatically, and probably more closely if manually controlled. The automatic control system also protects the capsule from temperature overshoot during a fast reactor recovery following a scram.