ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
Orrington E. Dwyer, Allen M. Eshaya
Nuclear Science and Engineering | Volume 6 | Number 4 | October 1959 | Pages 350-360
Technical Paper | doi.org/10.13182/NSE59-A28855
Articles are hosted by Taylor and Francis Online.
In the Liquid Metal Fuel Reactor (LMFR) under development in the United States, the fuel is a dilute solution of U, Mg, and Zr in bismuth. At the operating fuel temperatures (400–550°C), the volatile fission products (FPV's), which represent about ¼ of the total by weight, are mostly the noble gases Kr and Xe with small amounts of the halogen fission products Br and I. Owing to the facts that the LMFR is a thermal breeder reactor and that the 9.13-h Xe135 isotope has a 2.7 × 106-barn thermal cross section, the concentration of FPV's in the fuel and in the core must be kept very low for good neutron economy. For a 1 % reactor poisoning level, and assuming no Xe adsorbed on or absorbed in the graphite, the concentrations of 9.13-h Xe135 and total Xe in the fuel are estimated to be about 1.5 and 13 parts per billion, respectively, for a typical commercial plant. Complete isotopic compositions of the volatile fission products and poison levels for different removal rates are presented. The effect of various degrees of volatilization of the iodine and bromine on these factors are also shown. Xe represents over 80% by weight of the FPV's. Both Xe and its precursor, iodine, have strong tendencies to adsorb on unwetted surfaces and to penetrate graphite, the moderator material in the reactor core. Immobilization of Xe in the core would present a problem from the standpoint of reactor poisoning. Experimental results are presented to show the extents to which both iodine and Xe adsorb on steel and graphite and penetrate graphite. It appears that the Xe problem is not so much one of removing it from the fuel in a desorber as it is in preventing it from collecting on graphite surfaces in the core.