ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Toshihiko Kawano, Fritz H. Fröhner
Nuclear Science and Engineering | Volume 127 | Number 2 | October 1997 | Pages 130-138
Technical Paper | doi.org/10.13182/NSE97-A28592
Articles are hosted by Taylor and Francis Online.
An accurate database is used to study optical model fits to total neutron cross sections of 56Fe in the resolved and unresolved resonance regions. Averages over resolved resonances are calculated from resonance parameters in a Reich-Moore (reduced R matrix) approximation with Lorentzian weighting. Optical potential parameters are obtained for the s, p, and d waves that reproduce the smoothed cross sections in the resolved resonance region. The p-wave optical potential is found to differ from the s-wave potential. When the appropriate higher angular momentum contributions are added, the average total cross sections can be fitted quite well, from the resolved resonance region all the way up to 20 MeV.