ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
O. Bouland, H. Derrien, N. M. Larson, L. C. Leal
Nuclear Science and Engineering | Volume 127 | Number 2 | October 1997 | Pages 105-129
Technical Paper | doi.org/10.13182/NSE127-105
Articles are hosted by Taylor and Francis Online.
A Bayesian R-matrix-fitting code called SAMMY is used in a new analysis of the 240Pu neutron cross sections in the 0.02- to 5700-eV energy range. This work aims to resolve the discrepancies revealed by the JEF2 validation studies. A set of experimental data, suitable for the analysis, is determined from preliminary SAMMY analyses of the available experimental data treated individually. Finally, the sequential analysis of the selected transmission, total, and fission cross-section measurements gives an accurate set of resonance parameters. For the 1.056-eV resonance, the analysis of a recent transmission measurement gives parameters very close to those adopted in ENDF/B-VI. In the energy range above 200 eV, the average capture cross section calculated from the present evaluation is in agreement with ENDF/B-VI but is 25% lower than the values of JEF-2 and JENDL-3. A rigorous study of the statistical properties of the resonance parameters is done during this work. Although 158 new resonances are identified by the careful examination of the experimental fission cross-section and transmission data, the value of the average spacing above 2750 eV (D0 = 16.10 eV) shows a 25% loss of resonances compared with the lower energy region (D0 = 12.06 eV). Finally, for the s-wave resonance parameters, this work recommends the following average values: resonance spacing, D0 = 12.06 ± 0.60 eV; strength function, S0 = (1.032 ± 0.071) × 10−4 eV; and capture width, = 31.92 ± 1.6 meV.