ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Bingjing Su, G. C. Pomraning
Nuclear Science and Engineering | Volume 124 | Number 2 | October 1996 | Pages 309-319
Technical Paper | doi.org/10.13182/NSE96-A28580
Articles are hosted by Taylor and Francis Online.
Standard PN theory is well developed as an approximation to the neutron transport equation. However, this theory contains no physics in the sense that it simply represents the angular flux as a sum of polynomials in angle. Thus, standard PN theory (with N finite) cannot qualitatively predict correct asymptotic transport behavior except in the limit of pure scattering. In this paper‚ we modify standard PN theory by incorporating certain transport physics, namely, the Case discrete modes, into a modified PN expansion of the angular flux. The theory resulting from using this modified PN-like expansion predicts the exact transport asymptotic growth/decay length, since it contains the discrete Case eigenvalue. Such modified P3-like equations and associated boundary conditions are derived in planar geometry according to a recently introduced variational calculus. Analyses and numerical calculations reveal that this modified P3-like theory possesses the following features: (a) It reduces to standard P3 theory in the limit of pure scattering; (b) it conserves neutrons but exhibits a scalar flux discontinuity at a material interface; (c) it is shown numerically to be exceedingly accurate, much more accurate than standard P3 theory, in predicting various transport theory behavior for homogeneous problems; and (d) for heterogeneous problems, it is necessary that each material region in the system be sufficiently large for this theory to predict better results than standard P3 theory.