ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Noriaki Nakao, Hiroshi Nakashima, Takashi Nakamura, Shun-ichi Tanaka, Susumu Tanaka, Kazuo Shin, Mamoru Baba, Yukio Sakamoto, Yoshihiro Nakane
Nuclear Science and Engineering | Volume 124 | Number 2 | October 1996 | Pages 228-242
Technical Paper | doi.org/10.13182/NSE96-A28574
Articles are hosted by Taylor and Francis Online.
The energy spectra of neutrons that penetrate 25- to 200-cm-thick concrete shields are measured using 40- and 65-MeV quasi-monoenergetic neutron sources at the 90-MeV AVF cyclotron of the Takasaki Ion Accelerator Facility for Advanced Radiation Application at the Japan Atomic Energy Research Institute. Source neutrons are produced at 3.6- and 5.2-mm-thick 7Li targets bombarded 43- and 68-Me Vprotons, respectively, and their spectra are measured with a proton recoil counter telescope and the time-of-flight method. In the shielding experiment, a BC501A organic liquid scintillator and a multimoderator spectrometer with a 3He counter (the Bonner Ball) are used as the neutron spectrometer. The collimated source neutrons are used to obtain the neutron spectra with the unfolding technique on the neutron beam axis and at off-center positions. MORSE Monte Carlo calculations are performed with the DLC119/HIL086 multigroup cross-section library for comparison with the measured data on the beam axis. The comparison reveals that the calculated spectra are in good agreement with the measured spectra. The measured data at off-center positions are used to check the calculational accuracy of the angular distribution of neutron scattering in the MORSE-CG, DOT3.5 discrete ordinates, and HETC-KFA2 Monte Carlo codes. The MORSE-CG code gives better results than the other two codes.