ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Yukiko Hanzawa, Daisuke Hiroishi, Chihiro Matsuura, Kenkichi Ishigure
Nuclear Science and Engineering | Volume 124 | Number 2 | October 1996 | Pages 211-218
Technical Paper | doi.org/10.13182/NSE96-A28572
Articles are hosted by Taylor and Francis Online.
The solubility of nickel ferrite is measured at 423, 473, and 523 K in a pure or oxygenated water system, which is similar to boiling water reactor conditions‚ using a specially designed batch autoclave system. Thermodynamic analysis is performed by a procedure minimizing Gibbs free energy of the system at the final state. On the basis of both the analysis and the experimental results, it is shown that the dissolution mechanism of NiFe2O4 under the condition where no redox reaction takes place consists of both NiFe2O4 dissolution and Fe2O3 precipitation equilibria. The calculated value of the solubility at 423 K using literature values of the thermodynamic data agree with the experimental value, but at 473 and 523 K they deviate somewhat from the experimental ones. By fitting to the experimental results at these temperatures, the thermodynamic data of NiFe2O4 for 473 and 523 K are reanalyzed, and new values are proposed.