ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Ji Bok Lee, Byong Whie Lee, Byung Chul Lee
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 334-344
Technical Paper | doi.org/10.13182/NSE95-A28569
Articles are hosted by Taylor and Francis Online.
A radiation streaming analysis for the radial and tangential beam tubes of a 250-kW TRIGA reactor was performed using the MCNP-MCNP coupling method. The measurements of the neutron flux and dose rate in the beam tubes were also conducted using gold-aluminum foils and thermoluminescent dosimeters. When compared with the experimental results, the calculated thermal neutron flux reproduces the measurement well, i.e., within 2 to 90%. The calculated nonthermal neutron and gamma-ray dose rates show about the same distribution along the beam tube as the measurements. For the neutron dose rate, there is a big discrepancy between the calculation and the measurement for the radial beam tube but good agreement for the tangential tube. The calculational method using MCNP-MCNP coupling, which is used here, may well be applicable to analyzing the particle streaming phenomena in the beam tube of a research reactor. The beam characteristics of the radial and tangential tubes were investigated based on MCNP calculations. The thermal neutron fluxes are about the same in both beam tubes, but the ratios of the thermal-to-nonthermal neutron flux and the thermal neutron-to-gamma-ray flux in the tangential beam tube increase from only 12% and 18% higher at the nose to 2.4 times and 2.8 times higher at 130 cm from the nose, respectively, compared with those for the radial tube. Thus, the tangential beam tube gives a better neutron beam quality, i.e., the same thermal neutron flux and lower nonthermal neutron and gamma-ray fluxes at the tangential beam tube exit as compared with the radial one.