ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Ji Bok Lee, Byong Whie Lee, Byung Chul Lee
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 334-344
Technical Paper | doi.org/10.13182/NSE95-A28569
Articles are hosted by Taylor and Francis Online.
A radiation streaming analysis for the radial and tangential beam tubes of a 250-kW TRIGA reactor was performed using the MCNP-MCNP coupling method. The measurements of the neutron flux and dose rate in the beam tubes were also conducted using gold-aluminum foils and thermoluminescent dosimeters. When compared with the experimental results, the calculated thermal neutron flux reproduces the measurement well, i.e., within 2 to 90%. The calculated nonthermal neutron and gamma-ray dose rates show about the same distribution along the beam tube as the measurements. For the neutron dose rate, there is a big discrepancy between the calculation and the measurement for the radial beam tube but good agreement for the tangential tube. The calculational method using MCNP-MCNP coupling, which is used here, may well be applicable to analyzing the particle streaming phenomena in the beam tube of a research reactor. The beam characteristics of the radial and tangential tubes were investigated based on MCNP calculations. The thermal neutron fluxes are about the same in both beam tubes, but the ratios of the thermal-to-nonthermal neutron flux and the thermal neutron-to-gamma-ray flux in the tangential beam tube increase from only 12% and 18% higher at the nose to 2.4 times and 2.8 times higher at 130 cm from the nose, respectively, compared with those for the radial tube. Thus, the tangential beam tube gives a better neutron beam quality, i.e., the same thermal neutron flux and lower nonthermal neutron and gamma-ray fluxes at the tangential beam tube exit as compared with the radial one.