ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Y. A. Chao, Y. A. Shatilla
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 210-225
Technical Paper | doi.org/10.13182/NSE95-A28559
Articles are hosted by Taylor and Francis Online.
The ANC-H code is the hexagonal geometry version of the Westinghouse three-dimensional advanced nodal code ANC. Together with PHOENIX-H, the hexagonal geometry version of the Westinghouse pressurized water reactor (PWR) lattice code PHOENIX-P, they provide the Westinghouse code package for designing VVER-type PWR cores of hexagonal geometry. The nodal theory of ANC-H is the net current nodal expansion method implemented with the technique of conformal mapping, which maps a hexagon to a rectangle while preserving the diffusion operator. The use of conformal mapping eliminates the root cause of singularities resulting from the conventional transverse integration. The intranode burnup gradient is accounted for by allowing spatially dependent nodal cross sections. The theory of ANC-H is qualified by benchmarking ANC-H against fine-mesh finite difference code solutions for a variety of benchmark problems. In all cases, the agreement has been excellent. The accuracy of ANC-H for hexagonal geometry cores is as good as ANC for Cartesian geometry cores.