ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Y. A. Chao, N. Tsoulfanidis
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 202-209
Technical Paper | doi.org/10.13182/NSE95-A28558
Articles are hosted by Taylor and Francis Online.
The conventional transverse integration method of deriving nodal diffusion equations does not satisfactorily apply to hexagonal nodes. The transversely integrated nodal diffusion equation contains nonphysical singular terms, and the features that appear in the nodal equations for rectangular nodes cannot be retained for hexagonal ones. A method is presented that conformally maps a hexagonal node to a rectangular node before the transverse integration is applied so that the resulting nodal equations are formally analogous to the ones for rectangular nodes without the appearance of additional singular terms. Utilizing the invariance of the Laplacian diffusion operator under conformal mappings, it is shown that the diffusion equation for a homogeneous hexagonal node can be transformed to the diffusion equation for an inhomogeneous rectangular node. The inhomogeneity comes in through a smoothly varying mapping scale function, which depends only on the geometry. The steps of conformal mapping from a hexagonal node to a rectangular node are given, and the mapping scale function is derived, evaluated, and applied to nodal equation derivations.