ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
E. Z. Müller
Nuclear Science and Engineering | Volume 109 | Number 2 | October 1991 | Pages 200-214
Technical Note | doi.org/10.13182/NSE91-A28518
Articles are hosted by Taylor and Francis Online.
A one-dimensional method based on a combination of the “nodal equivalence theory” and response matrix homogenization methods was previously described for determining environment-insensitive equivalent few-group diffusion theory parameters for homogenized radial reflector nodes of a pressurized water reactor. This reflector model, called the NGET-RM model, yields equivalent nodal parameters that do not account for the two-dimensional structure of the baffle at core corners; this can lead to significant errors in computed two-dimensional core power distributions. A semi-empirical correction procedure is proposed for reducing the two-dimensional effects associated with this particular one-dimensional reflector model. Numerical two-group experiments are performed for a given reflector configuration (and soluble boron concentration) to determine optimal values for the two empirical factors defined by this model. It is shown that the resultant factors are rather insensitive to core configuration or core conditions and that their application yields improved two-group NGET-RM reflector parameters with which accurate nodal power distributions can be obtained. The results are also compared with those obtained with another one-dimensional environment-insensitive model that has an extra degree of freedom utilized here to reduce two-dimensional effects. Some practical aspects related to the application of the proposed correction procedure are briefly discussed.