ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. C. Berkan, B. R. Upadhyaya, L. H. Tsoukalas, R. A. Kisner
Nuclear Science and Engineering | Volume 109 | Number 2 | October 1991 | Pages 188-199
Technical Paper | doi.org/10.13182/NSE91-A28517
Articles are hosted by Taylor and Francis Online.
Axial flux shape control in large pressurized water reactors constitutes one of the most challenging control problems in the nuclear field. In commercial plants, the practical solutions are obtained at the expense of departure from the most economical operational conditions, often due to the difficulties in monitoring xenon-induced oscillations and inadequate control actions. The concept of inverse dynamics in control is introduced as an alternative approach for spatial control. The method is tested through computer simulations using a validated nonlinear model that successfully represents the limit-cycle behavior. Compared with the widely used half-cycling strategy or the proposed optimal control methods in the literature, the use of inverse dynamics for partial-length rod control yields desirable stability characteristics. The return to target axial offset exhibits a smooth transition without any residual flux oscillations between the upper and lower halves of the core. The proposed approach consists of a set of nonlinear algebraic equations for control with single-step solutions. Thus, it is easier to implement compared with iterative or integral techniques.