ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Nagafumi Aihara, Nobuo Fukumura, Hiroyuki Kadotani, Yuuki Hachiya
Nuclear Science and Engineering | Volume 109 | Number 2 | October 1991 | Pages 158-170
Technical Paper | doi.org/10.13182/NSE91-A28515
Articles are hosted by Taylor and Francis Online.
The effect on reactivity of changes in the coolant levels in the pressure tubes of a pressure-tube heavy water reactor is experimentally studied to clarify the effect of an axial coolant void fraction distribution. The coolant void fraction distribution is simulated by stepwise changes in the coolant levels in the Deuterium Critical Assembly (DCA). The reactivity is measured for a 25.0-cm-pitch square-lattice core with a positive coolant void reactivity. The reactivity changes resulting from changes in the coolant levels are measured as changes in the critical heavy water levels. The axial distribution of the thermal neutron flux is also measured by the copper activation method. In these measurements, the critical heavy water levels show a sinuous curve having a maximum and a minimum, and a positive reactivity larger than those of both the 0% and the 100% void uniform cores is introduced at certain coolant levels by stepwise changes in the coolant levels. An experimental analysis is performed with the coupled WIMS-ATR/CITATION code system, whose analytical method was established through DCA critical experiments. Agreement between experiment and analysis is fairly good. Furthermore, the peculiar reactivity behavior resulting from changes in the coolant levels is analyzed using a simplified model to take note of typical reactor physics parameters. It is clarified that this anomalous phenomenon is caused by the combined effect of the flattened S curve change in the thermal neutron absorption and the even flatter S curve change in the neutron leakage caused by the changes in the coolant levels. Useful information is obtained regarding reactivity behavior with an axial coolant void fraction distribution.