ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S. Nakamura
Nuclear Science and Engineering | Volume 61 | Number 1 | September 1976 | Pages 98-106
Technical Paper | doi.org/10.13182/NSE76-A28465
Articles are hosted by Taylor and Francis Online.
The accelerating effect of coarse-mesh rebalancing on the low-order Chebyshev polynomial iterations to obtain the fundamental eigenvector of large homogeneous linear systems associated with elliptic partial-differential equations is mathematically analyzed. Coarse-mesh rebalancing is shown to have a positive accelerating effect if one of the following conditions is met: (a) the weighting vectors are not contaminated with high eigenvector components, (b) Galerkin's weighting vectors are used, or (c) the non-Galerkin weighting vectors are similar to the trial vectors. As another interesting result, it is shown that the overshooting effect is related to the fourth and higher eigenvector components that have spatially odd parities. If the above condition, (c), is met, there is no overshooting; otherwise, the acceleration effect with non-Galerkin weighting vectors is unpredictable.