ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. E. Ragan III, G. F. Auchampaugh, A. Hemmendinger, M. G. Silbert
Nuclear Science and Engineering | Volume 61 | Number 1 | September 1976 | Pages 33-39
Technical Paper | doi.org/10.13182/NSE76-A28458
Articles are hosted by Taylor and Francis Online.
A benchmark measurement of the neutron leakage spectrum from a pulsed 38-kg uranium (93.5% 235U) sphere has been made using time-of-flight techniques. The sphere had a multiplication of ∼11 for 14-MeV neutrons, and a neutron hold-up time of ∼40 nsec. The centrally located source of 14.1 ± 0.8-MeV neutrons, produced by bombarding a tritium gas target with pulses of low-energy deuterons, was isotropic to ±7.7%. Neutrons in the 0.180- to 16.0-MeV energy range were detected at the end of a 39-m flight path by an Ne-213 liquid scintillator employing pulse-shape discrimination. The detector efficiency was measured over this same energy range using monoenergetic neutrons from the T(p,n) T(d,n), and D(d,n) reactions. The measured neutron flux as a function of energy is compared with the results of Monte Carlo calculations performed with the MCN code. Uranium cross sections from ENDF/B-IV and an older set from Lawrence Livermore Laboratory were used in these calculations. The results calculated using the ENDF/B-IV cross sections are in good agreement with the measurements, especially in the 1- to 6-MeV energy region where the uncertainties in both the calculated and experimental results are the smallest.