ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
John R. Travis, Francis H. Harlow, Anthony A. Amsden
Nuclear Science and Engineering | Volume 61 | Number 1 | September 1976 | Pages 1-10
Technical Paper | doi.org/10.13182/NSE76-A28455
Articles are hosted by Taylor and Francis Online.
The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for a high-speed computer are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite difference formulation that is simultaneously implicit in the treatment of mass convection, equations-of-state, and the momentum coupling between phases. We describe such a method, discuss the equations on which it is based, and illustrate its properties by means of examples. In particular, we emphasize the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy.