ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
C. R. Richey, T. J. Oakes
Nuclear Science and Engineering | Volume 47 | Number 1 | January 1972 | Pages 40-58
Technical paper | doi.org/10.13182/NSE72-A28419
Articles are hosted by Taylor and Francis Online.
The High Temperature Lattice Test Reactor (HTLTR) is a unique critical facility specifically built for studying reactor lattices at temperatures up to 1000°C. A description of the reactor is given and the unpoisoned technique for determining as measured by the unpoisoned method and the well known Physical Constants Testing Reactor null reactivity method method are given for a natural UO2-2.2 wt% PuO2 (8% 240Pu) graphite lattice and for a UO2 (97.42 wt% 233U)-232ThO2-C fuel element in a graphite array. Experimental values for the neutron multiplication factor have been determined as a function of temperature using the HTLTR for a graphite moderated lattice fueled with a 235UC2 -232ThO2 -C fuel mixture. These results provide valuable check points for testing computational methods currently being applied in the design of high temperature gas cooled reactors.