ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
R. S. Booth, J. E. White, S. K. Penny, K. J. Yost
Nuclear Science and Engineering | Volume 47 | Number 1 | January 1972 | Pages 8-18
Technical paper | doi.org/10.13182/NSE72-A28416
Articles are hosted by Taylor and Francis Online.
The gamma-ray energy spectra resulting from neutron capture in 238 were calculated using the gamma-ray cascade code DUCAL for incident neutrons in the energy range 0.0 ≤ E ≤ 1.1 MeV. The overall spectral shapes generated for thermal and epithermal neutron capture agree quite favorably with an integral measurement. Absolute comparisons of the generated spectra with differential capture yield measurements exhibit general agreement. Variations in the spectral shape with neutron energy are noticeable above 3.0 MeV.