ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
W. Hage, D. M. Cifarelli
Nuclear Science and Engineering | Volume 112 | Number 2 | October 1992 | Pages 136-158
Technical Paper | doi.org/10.13182/NSE92-A28410
Articles are hosted by Taylor and Francis Online.
A mathematical model is derived for the factorial moments of the probability distribution of neutron signal multiplets within signal-triggered inspection intervals, detected with a paralyzing neutron dead-time counter. These moments are a function of the spontaneous fission rate, the (α ,n) reaction rate, the probability that a neutron generates an induced fission, the neutron detection probability, the dead time, and the nuclear physics data. Monte Carlo calculations are used to check the derived algorithms and the iterative procedure. This procedure is then applied to real measurement data of a PuO2 sample to obtain the correlated multiplets from the numerical values of the factorial moments.