ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
J. Devooght, C. Smidts
Nuclear Science and Engineering | Volume 112 | Number 2 | October 1992 | Pages 101-113
Technical Paper | doi.org/10.13182/NSE92-A28407
Articles are hosted by Taylor and Francis Online.
During an accident, components fail or evolve within operating states because of operator actions. Physical variables such as pressure and temperature vary, and alarms appear and disappear. Operators diagnose the situation and effect countermeasures to recover the accidental sequence in due time. A mathematical modeling of the complex interaction process that takes place between the operating crew and the reactor during an accident is proposed. This modeling derives from a generalization of the theory of continuous event trees developed for hardware systems to a mixture of human and hardware systems. Such a generalization requires extension of the evolution equations built under the Markovian assumption to semi-Markovian processes because dead times as well as nonexponential distributions must be modeled. Operator and reactor states have transitions due to their own evolution (dQ00, dQRR) or to their mutual influence (dQ0R, dQR0). The correspondence between the estimates yielded by current human reliability models and the transition rates required as input data by the model is given. This model should be seen as a mold in which most existing human reliability models fit.