ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
J. Devooght, E. H. Mund, B. Arien, A. Siebertz
Nuclear Science and Engineering | Volume 88 | Number 2 | October 1984 | Pages 191-199
Technical Note | doi.org/10.13182/NSE84-A28403
Articles are hosted by Taylor and Francis Online.
The numerical results that have been obtained for various reactor characteristics using the generalized quasi-static approximation for the study of fast reactor transients are analyzed. This approximation leads to a set of coupled nonlinear mixed boundary initial value problems for “amplitude” and “shape” neutron fluxes that are solved with a Newton-successive over-relaxation algorithm. Some details are given on the time integration module. Comparisons are established with the results obtained by other codes.