ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
S. Nagy, S. Daróczy, P. Raics, I. Boda, and I. Matajsz
Nuclear Science and Engineering | Volume 88 | Number 2 | October 1984 | Pages 154-163
Technical Paper | doi.org/10.13182/NSE84-A28399
Articles are hosted by Taylor and Francis Online.
Different empirical and semiempirical systematics have been developed to predict unmeasured fission product yields. One of these methods, originally proposed by Musgrove et al. and developed by Cook et al., is used to describe the energy dependence of the mass distribution in neutron-induced fission of 238U utilizing published yield data. The available measured cumulative yields of fission products are collected for monoenergetic 238U(n, f) processes. The mass distributions at approximate neutron energies of 1.5, 2.0, 3.0, 3.9, 5.2, 6.0, 7.0, 7.9, 9.0, and 14.7 MeV are fitted by the sum of five Gaussian functions. The energy dependence of the parameters of the Gaussian functions can also be described by semiempirical formulas. The 2σ error of the mass yields calculated by the fitted parameters can be estimated to be ∼10% in the peak regions and 20% in the valley region for the above neutron energies. The formulas with the given parameters can be useful in estimating unmeasured 238U fission product yields for any monoenergetic and nonmonoenergetic neutron irradiations in the range of 1.5 to 15 MeV. The method has been tested in a study of the 238U fission by neutrons having a Watt spectrum produced in the thermal fission of235U.