ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Y. Naito, M. Maekawa, K. Shibuya
Nuclear Science and Engineering | Volume 58 | Number 2 | October 1975 | Pages 182-192
Technical Paper | doi.org/10.13182/NSE75-A28221
Articles are hosted by Taylor and Francis Online.
A new iterative method is proposed for solving the three-dimensional neutron diffusion equation. This method reduces the discretization error in the calculation of neutron leakage from a subregion. In addition, when only one fine-mesh point is located in each subregion, this method becomes the same as a fine-mesh finite-difference approximation method. Therefore, it is easy to compare the results of this method with those of a fine-mesh difference approximation. The computer code for this method can be used for calculating both the collapsed neutron flux and fine-mesh difference approximations. The conditions for the convergence of this iterative technique are introduced as a function of the neutron leakage.