ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
J. Lachkar, J. Sigaud, Y. Patin, G. Haouat
Nuclear Science and Engineering | Volume 55 | Number 2 | October 1974 | Pages 168-187
Technical Paper | doi.org/10.13182/NSE74-A28205
Articles are hosted by Taylor and Francis Online.
Differential production cross sections for gamma rays from the 56Fe(n,n’y) reactions are presented for incident-neutron energies between 2.5 and 14.1 MeV. The reactions are studied at 11 neutron energies using pulsed beam techniques with the D(d, n)3He reaction and associated particle method with the T(d,n)4He reaction as neutron sources and using a sample of natural iron. The excitation functions of 17 gamma-ray transitions were measured between 4.8- and 8.8-MeV incident energies in nine 0.5-MeV steps at an angle of 90 deg. Angular distributions of 13 prominent gamma rays were also measured at 8.8-MeV neutron energy and for the 846.8- and 1238.3-keV gamma rays at 2.5- and 14.1-MeV neutron energies.