ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
D. E. Bartine, E. M. Oblow, F. R. Mynatt
Nuclear Science and Engineering | Volume 55 | Number 2 | October 1974 | Pages 147-167
Technical Paper | doi.org/10.13182/NSE74-A28204
Articles are hosted by Taylor and Francis Online.
A general approach to radiation-transport cross-section sensitivity analysis is introduced and its applicability demonstrated for a problem involving neutron and gamma-ray transport in air. The basis for the method is generalized perturbation theory using flux solutions to the transport equation and its adjoint. Both an analytical aspect of the technique, designed for surveying the sensitivity of a result to the entire cross-section data field, and a predictive aspect, designed for predicting the effect of changes in the data field, are presented. The analytic procedure is demonstrated by results that include a determination of important energy regions in the total, partial, and gamma-ray-production cross sections of nitrogen and oxygen for deep-penetration calculations of tissue dose in air. The predictive capability is illustrated for specific cross-section perturbations in the system and the effects of truncating the Legendre expansion of the scattering kernel. In addition, the applicability of the method for predicting variances in a calculated result arising from cross-section data uncertainties is demonstrated. In the sample case, the variance in the total neutron-gamma-ray tissue dose is estimated from preliminary cross-section error files given in the evaluations of the nitrogen and oxygen cross sections.