ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. E. Bartine, E. M. Oblow, F. R. Mynatt
Nuclear Science and Engineering | Volume 55 | Number 2 | October 1974 | Pages 147-167
Technical Paper | doi.org/10.13182/NSE74-A28204
Articles are hosted by Taylor and Francis Online.
A general approach to radiation-transport cross-section sensitivity analysis is introduced and its applicability demonstrated for a problem involving neutron and gamma-ray transport in air. The basis for the method is generalized perturbation theory using flux solutions to the transport equation and its adjoint. Both an analytical aspect of the technique, designed for surveying the sensitivity of a result to the entire cross-section data field, and a predictive aspect, designed for predicting the effect of changes in the data field, are presented. The analytic procedure is demonstrated by results that include a determination of important energy regions in the total, partial, and gamma-ray-production cross sections of nitrogen and oxygen for deep-penetration calculations of tissue dose in air. The predictive capability is illustrated for specific cross-section perturbations in the system and the effects of truncating the Legendre expansion of the scattering kernel. In addition, the applicability of the method for predicting variances in a calculated result arising from cross-section data uncertainties is demonstrated. In the sample case, the variance in the total neutron-gamma-ray tissue dose is estimated from preliminary cross-section error files given in the evaluations of the nitrogen and oxygen cross sections.