ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
W. J. Garland, A. A. Harms, J. Vlachopoulos
Nuclear Science and Engineering | Volume 55 | Number 2 | October 1974 | Pages 119-128
Technical Paper | doi.org/10.13182/NSE74-A28202
Articles are hosted by Taylor and Francis Online.
The concept of an efficient temporal transformation is introduced in solving stiff space-time equations encountered in nuclear reactor transients analysis. The multigroup diffusion equations are employed for the basic system description. Approximate solutions are found analytically and corrections are made using the alternating direction implicit method to solve the finite difference equations resulting from the transformation. The conditions for stability and convergence of this technique are discussed and the method is illustrated by a two-group two-dimensional analysis of a CANDU-BLW nuclear reactor cell. This method described here appears particularly appropriate immediatel following system perturbations but before the dominant temporal trend has been established.