ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
C. David Livengood, C. Keith Paulson, H. E. Hungerford
Nuclear Science and Engineering | Volume 52 | Number 2 | October 1973 | Pages 254-266
Technical Paper | doi.org/10.13182/NSE73-A28194
Articles are hosted by Taylor and Francis Online.
Experimental techniques previously used for measuring neutron spectra in fast critical assemblies have been applied to reactor shielding problems. Fast-neutron spectra in the energy range from 25 keV to 1 MeV have been measured in the water shield surrounding a small thermal research reactor. Three different water thicknesses were investigated, as well as a combination of water with a 2-in.-thick slab of iron. The spectrometer system developed for these measurements employs small proton-recoil proportional counters, together with electronic pulse-shape discrimination for the rejection of gamma-ray signals. Since this discrimination is extremely important for shielding measurements, the detectors and electronic system are described in some detail. The basic theory underlying proton-recoil measurements of neutron spectra is reviewed, as well as the techniques used to correct for errors arising due to finite detector size and irregularities in the electric field within the counters. Results of the water measurements indicate that the spectrometer is capable of measuring the absolute neutron flux as well as relative variations within the spectrum at a given point. In addition, predictions of spectral hardening with increasing water thickness are verified. The water-iron measurements indicate that the system is capable of measuring spectral features caused by resonances in the cross section of the shield material.