ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. E. Maerker, F. J. Muckenthaler
Nuclear Science and Engineering | Volume 52 | Number 2 | October 1973 | Pages 227-246
Technical Paper | doi.org/10.13182/NSE73-A28192
Articles are hosted by Taylor and Francis Online.
A description is presented of an experiment which provides verification of the accuracy of the available neutron cross sections for use in transport calculations of deep penetration of neutrons through up to 3 ft of iron and 18 in. of stainless steel. Calculations of the experiment were performed with a special version of the MORSE multigroup Monte Carlo code which uses point total cross sections. Comparison of the calculations using the new MAT 4180-Mod 1 iron cross-section set with experiment indicates that the absolute neutron leakage spectra above thermal energies arising from scattering that penetrate up to 1 ft of iron or 18 in. of stainless steel can be calculated to within ∼20%, and that the total neutron leakage above thermal energies penetrating up to 3 ft of iron can also be calculated to about the same accuracy.