ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Gad Shani
Nuclear Science and Engineering | Volume 52 | Number 2 | October 1973 | Pages 215-226
Technical Paper | doi.org/10.13182/NSE73-A28191
Articles are hosted by Taylor and Francis Online.
Neutron waves in a reflected reactor are analyzed using the two-group diffusion equation. The solution is composed of a transient which disappears within a few milliseconds, a steady-state part, and an oscillatory part. The last is comprised of four terms corresponding to four waves: two propagating waves and two reflected waves. When a sinusoidal source of thermal neutrons is applied to a water-moderated multiplying medium, the source wave amplitude decays with a relaxation length equal to the diffusion length of the medium. A wave of fast neutrons is then produced by fission which is induced by the source wave. This fast-neutron wave carries the wave phenomenon across the core. The two propagating thermal-neutron waves are (a) the source wave, and (b) a wave of thermalized fission neutrons. The two reflected waves are the reflections of the two propagating waves. The amplitudes and phases of the four waves are calculated, together with those of the total wave which is the sum of the four partial waves. The agreement of the measured data of the total wave with the calculations is reasonable. Modulated poison and source oscillators were used for the experiments. The reactor response to both was essentially the same except in the region near the oscillators; while the first decreased the number of neutrons, the second increased their number.