ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
University of Nebraska–Lincoln: Home of ANS’s newest student section
Following official confirmation in June at the American Nuclear Society’s 2025 Annual Conference, the University of Nebraska–Lincoln has kicked off its first year as the newest ANS student section.
José Canosa, Harvey Brooks
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 237-253
Technical Paper | doi.org/10.13182/NSE66-A28166
Articles are hosted by Taylor and Francis Online.
The xenon-induced oscillations in the power level (fundamental mode) and in the power distribution (first harmonic) have been studied for a slab reactor with prompt power reactivity feedback. One-group space-dependent kinetics equations and linearized theory are used throughout. The linear analysis rigorously predicts the onset of xenon oscillations; however, it does not say anything on how much the oscillation amplitude grows or decays. Explicit formulas giving the effects of the coupling of the infinite number of reactor modes with the fundamental mode and first harmonic are obtained and used for the first time to explain mode-coupling effects both qualitatively and quantitatively. Mode-coupling effects are quite small at the thermal flux levels of present power reactors [1013−1014 n/(cm2sec)]. At higher fluxes [1015 n/(cm2sec)] mode coupling is destabilizing and might be significant; here the negative feedback reactivity needed to provide stability must be increased by ≈ 10%, relative to the value obtained from a calculation where coupling is neglected. A study has been made on the influence of the equilibrium power distribution on both types of oscillations; this study gives information concerning the effects of a reflector on reactor kinetics. A new result is that, depending on flux level, a reflected reactor may be more stable than a bare reactor against fundamental mode oscillations.