ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P. H. Kier
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 230-236
Technical Paper | doi.org/10.13182/NSE66-A28165
Articles are hosted by Taylor and Francis Online.
A method of calculating resonance absorption in a rod in a two-region circularized cell is developed. The method uses space-and lethargy-dependent neutron sources and, thus, includes overlapping and interference effects. An energy range of interest is divided into extremely narrow intervals of equal lethargy width. For each interval, the source distribution in each region is taken to be a three-term polynomial. By using this form for the source and the assumption that neutrons enter the rod isotropically, we obtain the reaction rates and the flux distribution for the interval. The reaction rates are used to obtain resonance integrals; the flux distribution is used to get the source distribution for lower energies. Calculations of the errors introduced into the resonance integral of the two closely spaced 232Th resonances by the assumption of flat sources are given, as well as calculations of the effects of interference in UO2-ThO2 mixtures, which lie within the errors of the experimental results obtained by Foell.