ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
P. H. Kier
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 230-236
Technical Paper | doi.org/10.13182/NSE66-A28165
Articles are hosted by Taylor and Francis Online.
A method of calculating resonance absorption in a rod in a two-region circularized cell is developed. The method uses space-and lethargy-dependent neutron sources and, thus, includes overlapping and interference effects. An energy range of interest is divided into extremely narrow intervals of equal lethargy width. For each interval, the source distribution in each region is taken to be a three-term polynomial. By using this form for the source and the assumption that neutrons enter the rod isotropically, we obtain the reaction rates and the flux distribution for the interval. The reaction rates are used to obtain resonance integrals; the flux distribution is used to get the source distribution for lower energies. Calculations of the errors introduced into the resonance integral of the two closely spaced 232Th resonances by the assumption of flat sources are given, as well as calculations of the effects of interference in UO2-ThO2 mixtures, which lie within the errors of the experimental results obtained by Foell.