ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
P. H. Kier
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 230-236
Technical Paper | doi.org/10.13182/NSE66-A28165
Articles are hosted by Taylor and Francis Online.
A method of calculating resonance absorption in a rod in a two-region circularized cell is developed. The method uses space-and lethargy-dependent neutron sources and, thus, includes overlapping and interference effects. An energy range of interest is divided into extremely narrow intervals of equal lethargy width. For each interval, the source distribution in each region is taken to be a three-term polynomial. By using this form for the source and the assumption that neutrons enter the rod isotropically, we obtain the reaction rates and the flux distribution for the interval. The reaction rates are used to obtain resonance integrals; the flux distribution is used to get the source distribution for lower energies. Calculations of the errors introduced into the resonance integral of the two closely spaced 232Th resonances by the assumption of flat sources are given, as well as calculations of the effects of interference in UO2-ThO2 mixtures, which lie within the errors of the experimental results obtained by Foell.