ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC cancels advanced reactor meeting due to government shutdown
The Nuclear Regulatory Commission has announced it is cancelling an upcoming advanced reactor stakeholder meeting, originally scheduled for November 19, due to the government shutdown and the limitations on staffing at the agency.
D. C. Leslie, J. G. Hill
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 222-229
Technical Paper | doi.org/10.13182/NSE66-A28164
Articles are hosted by Taylor and Francis Online.
In resonance capture calculations, it is usual to assume that the capture in any one resonance is unaffected by the existence of other resonances: this is known as the “flux recovery” assumption. This assumption is exact for hydrogenous moderation in a homogeneous situation. However, in highly heterogeneous lattice cells such as that of the Steam Generating Heavy Water Reactor (SGHW), in which the fuel is intimately associated with a powerful moderator, the resonance flux in the fuel is depressed below that in the bulk moderator. In this paper, this flux depression effect is investigated by using a model in which all moderation is hydrogenous and the resonances are square. This model suggests that the flux recovery assumption will overestimate 238U capture in a typical SGHW Lattice by about 5%.