ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Charles E. Cohn, Robert J. Johnson and Robert N. Macdonald
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 198-206
Technical Paper | doi.org/10.13182/NSE66-A28162
Articles are hosted by Taylor and Francis Online.
A method has been developed by which statics techniques can be used to calculate source transfer functions in the multigroup, multidimensional approximation. With the flux resolved into steady and fluctuating components, the time-dependent neutron balance equations are satisfied by the fluctuating part alone. Assuming that the external source and the flux response are sinusoidal, the original time-dependent equations transform into a set of complex equations dependent on space and frequency but independent of time. Separating the equations into real and imaginary parts yields coupled, inhomogeneous differential equations (two for each group). These can be solved by well-known statics techniques for the real and imaginary components φR and φI of the complex amplitudes of the fluxes, in turn yielding the gain and phase shift for each frequency of interest. This method was applied to the NORA reactor for which the space-dependent transfer function had been determined experimentally. The two-group telegrapher's equations were programmed for one-dimensional cylindrical geometry and the difference equations solved by direct matrix inversion and also by interative techniques. Results of the calculations closely reproduce the reported experimental results for gain and phase shift.