ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Charles E. Cohn, Robert J. Johnson and Robert N. Macdonald
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 198-206
Technical Paper | doi.org/10.13182/NSE66-A28162
Articles are hosted by Taylor and Francis Online.
A method has been developed by which statics techniques can be used to calculate source transfer functions in the multigroup, multidimensional approximation. With the flux resolved into steady and fluctuating components, the time-dependent neutron balance equations are satisfied by the fluctuating part alone. Assuming that the external source and the flux response are sinusoidal, the original time-dependent equations transform into a set of complex equations dependent on space and frequency but independent of time. Separating the equations into real and imaginary parts yields coupled, inhomogeneous differential equations (two for each group). These can be solved by well-known statics techniques for the real and imaginary components φR and φI of the complex amplitudes of the fluxes, in turn yielding the gain and phase shift for each frequency of interest. This method was applied to the NORA reactor for which the space-dependent transfer function had been determined experimentally. The two-group telegrapher's equations were programmed for one-dimensional cylindrical geometry and the difference equations solved by direct matrix inversion and also by interative techniques. Results of the calculations closely reproduce the reported experimental results for gain and phase shift.