ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
A. Leonard, Joel H. Ferziger
Nuclear Science and Engineering | Volume 26 | Number 2 | October 1966 | Pages 170-180
Technical Paper | doi.org/10.13182/NSE66-A28159
Articles are hosted by Taylor and Francis Online.
Our earlier treatment of the energy-dependent transport equation is extended to include the case in which cross sections are functions of energy. The technique again consists of finding solutions to the homogeneous transport equation after expansion in terms of a complete set of functions in the energy variable. Unlike the problem treated earlier, the full-range completeness theorem for these eigenfunctions requires the solution of a coupled set of singular integral equations. This solution is effected by a generalization of a trick used by Case and is applied to the problem for the infinite-medium Green's function. Numerical results are given for a heavy gas model. The half-range completeness theorem, which may be applied to half-space and finite slab problems, is proven in a companion paper.