ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
I. C. Goyal, L. S. Kothari
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 159-166
Technical Paper | doi.org/10.13182/NSE65-A28140
Articles are hosted by Taylor and Francis Online.
Equilibrium neutron energy spectra inside finite blocks of beryllium at different temperatures have been calculated by solving the energy-dependent Boltzmann equation in the diffusion approximation by numerical iteration. Different sizes of the assembly have been considered. The values of the transport mean free path, λtr (E), (for various temperatures) have been taken from earlier work. Because of the peaks in the transport mean free path, the calculated equilibrium flux differs markedly from the Maxwellian, particularly for small sizes and low temperatures. Calculations also give the values of the decay constant, λ for equilibrium neutrons. Values of λ based on Placzek kernel agree very well with the experimental values. The reasons why the present calculated values, as also the experimental values of λ, exceed Corngold's theoretical upper bound have been discussed. The effect on λ of ‘trapped neutrons’ and that of cold neutrons has also been studied by taking different forms for σtr (E).