ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
C. R. Richey, J. D. White, E. D. Clayton, R. C. Lloyd
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 150-158
Technical Paper | doi.org/10.13182/NSE65-A28139
Articles are hosted by Taylor and Francis Online.
Critical experiments were conducted with homogeneous mixtures of PuO2 - polystyrene (H:Pu atomic ratio of 15) containing both 2.2 and 8.0% Pu240. Criticality was determined for a series of Plexiglas reflected rectangular prisms ranging from near cubes, to long columns, and to thin slabs; bare arrays of near-cubic geometry were also studied. Critical thicknesses were 16.09 ± 0.41 and 5.99 ± 0.10 cm, respectively, for the bare and reflected infinite slabs of PuO2-polystyrene containing 2.2% Pu240. Corresponding values for the 8.0% Pu240 mixtures were 18.48 ± 0.41 and 7.38 ± 0.09 cm. The infinite slab thicknesses for an equivalent Pu239-water mixture (H:Pu = 15, ρ = 1.62 g Pu/cm3) were 11.66 ± 0.30 and 4.38 ± 0.08 cm, respectively, for the bare and water-reflected slabs. Corresponding critical radii for infinitely long cylinders were 10.52 ± 0.16 and 6.54 ± 0.14 cm; radii for critical spheres were 13.81 ± 0.16 and 10.40 ± 0.17 cm.