ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
L. G. Haggmark, T. H. Jones, N. E. Scofield, W. J. Gurney
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 138-149
Technical Paper | doi.org/10.13182/NSE65-A28138
Articles are hosted by Taylor and Francis Online.
The angular distribution of backscattered dose-rate ratio was measured for ‘semi-infinite’ concrete, aluminum and steel slabs irradiated by plane-parallel beams of Co60 and Cs137 gamma photons. The photons were incident on the slabs at angles, measured from the normal to the slab, of arccos 1.00, 0.75 and 0.50. For the necessary sensitivity, the backscattered dose rate was measured by a digital dosimetry system using a plastic scintillator as the detector. An empirical formula for differential dose-rate ratio was derived from the experimental data. Comparisons are made with two other experiments and a semi-empirical formula fitted to a Monte Carlo calculation. The experiments generally agree to within 20%. The values based upon the Monte Carlo calculation are generally 20% to 35% lower than the experimental values.