ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. K. Sanathanan, J. C. Carter, F. Miraldi
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 130-137
Technical Paper | doi.org/10.13182/NSE65-A28137
Articles are hosted by Taylor and Francis Online.
In Part I of this series, the authors have developed mathematical techniques to investigate the dynamics of coolant circulation in boiling-water nuclear reactors. This paper is an attempt to apply those techniques to various specific situations. A natural-circulation loop with a single heated channel is considered first. Dependence of the degree of stability upon the steady-state profile of the channel heat flux and the channel length are investigated. The influence of the pressure drops in the downcomer and at the channel inlet upon the transient two-phase flow is studied. The steady-state perturbations in the void fraction and velocity due to a small perturbation in the channel heat flux are predicted. The findings of the present study compare favorably with those obtained by the simplifying assumption made by the earlier investigators that the slip ratio is a constant along the channel length. The more interesting system with two or more channels operating in parallel with a common downcomer is considered next. The strength of the coupling between the dynamics of the flows through the channels increases with the pressure drop in the common downcomer, and this phenomenon is considered quantitatively. Results obtained theoretically are substantiated by comparison with those obtained through elaborate numerical methods and previous observations.