ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
C. K. Sanathanan, J. C. Carter, F. Miraldi
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 130-137
Technical Paper | doi.org/10.13182/NSE65-A28137
Articles are hosted by Taylor and Francis Online.
In Part I of this series, the authors have developed mathematical techniques to investigate the dynamics of coolant circulation in boiling-water nuclear reactors. This paper is an attempt to apply those techniques to various specific situations. A natural-circulation loop with a single heated channel is considered first. Dependence of the degree of stability upon the steady-state profile of the channel heat flux and the channel length are investigated. The influence of the pressure drops in the downcomer and at the channel inlet upon the transient two-phase flow is studied. The steady-state perturbations in the void fraction and velocity due to a small perturbation in the channel heat flux are predicted. The findings of the present study compare favorably with those obtained by the simplifying assumption made by the earlier investigators that the slip ratio is a constant along the channel length. The more interesting system with two or more channels operating in parallel with a common downcomer is considered next. The strength of the coupling between the dynamics of the flows through the channels increases with the pressure drop in the common downcomer, and this phenomenon is considered quantitatively. Results obtained theoretically are substantiated by comparison with those obtained through elaborate numerical methods and previous observations.