In Part I of this series, the authors have developed mathematical techniques to investigate the dynamics of coolant circulation in boiling-water nuclear reactors. This paper is an attempt to apply those techniques to various specific situations. A natural-circulation loop with a single heated channel is considered first. Dependence of the degree of stability upon the steady-state profile of the channel heat flux and the channel length are investigated. The influence of the pressure drops in the downcomer and at the channel inlet upon the transient two-phase flow is studied. The steady-state perturbations in the void fraction and velocity due to a small perturbation in the channel heat flux are predicted. The findings of the present study compare favorably with those obtained by the simplifying assumption made by the earlier investigators that the slip ratio is a constant along the channel length. The more interesting system with two or more channels operating in parallel with a common downcomer is considered next. The strength of the coupling between the dynamics of the flows through the channels increases with the pressure drop in the common downcomer, and this phenomenon is considered quantitatively. Results obtained theoretically are substantiated by comparison with those obtained through elaborate numerical methods and previous observations.