ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
C. K. Sanathanan, J. C. Carter, F. Miraldi
Nuclear Science and Engineering | Volume 23 | Number 2 | October 1965 | Pages 119-129
Technical Paper | doi.org/10.13182/NSE65-A28136
Articles are hosted by Taylor and Francis Online.
The dynamics of two-phase flow through the coolant channels of a natural-circulation boiling-water nuclear reactor is studied analytically. One-dimensional conservation equations describing the flow through each channel are written in the linearized perturbed form, and Laplace transformation in time is performed. A systematic procedure is developed to approximate the solution. The solution may, in general, be oscillatory both in time and in space. Since the space dependence of the transient steam void fraction is available, it may be multiplied by its reactivity worth to obtain the space-time-dependent void reactivity. The transfer function expressing the relation between the void fraction or velocity of water and the heat flux may be conveniently used to understand the hydrodynamic stability. The analytical techniques developed are applicable to both natural- and forced-circulation systems.