ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
A. B. Shuck, J. E. Ayer
Nuclear Science and Engineering | Volume 12 | Number 3 | March 1962 | Pages 398-404
Technical Paper | doi.org/10.13182/NSE62-A28090
Articles are hosted by Taylor and Francis Online.
The development of remote controlled methods for manufacturing EBR-II fuel elements was influenced by many interacting factors. Radiation levels within the process cell have been predicted to range from 103 to 107 rad per hour. Radiation damage to organic lubricant, electrical insulations, elastic seals, and protective coatings precludes the use of many standard machine components. Heat generated in the fuel by absorbed radiation makes forced cooling necessary in many operations. Oxygen must be exluded from all operations where the fuel is exposed. Equipment must be designed for remote maintenance and component replacement within the limitation of available manipulators. The EBR-II fuel consisted of fissium alloy pins sodium bonded in stainless steel tubes. Precision casting was chosen as the basis for refabricating the fuel pins. Remote controlled equipment was developed to cast, assemble, and inspect the EBR-II fuel elements. Radiation resistant, plug-in machine components were developed to give reasonable life expectancy and to allow remote maintenance and replacement.