ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
A. B. Shuck, J. E. Ayer
Nuclear Science and Engineering | Volume 12 | Number 3 | March 1962 | Pages 398-404
Technical Paper | doi.org/10.13182/NSE62-A28090
Articles are hosted by Taylor and Francis Online.
The development of remote controlled methods for manufacturing EBR-II fuel elements was influenced by many interacting factors. Radiation levels within the process cell have been predicted to range from 103 to 107 rad per hour. Radiation damage to organic lubricant, electrical insulations, elastic seals, and protective coatings precludes the use of many standard machine components. Heat generated in the fuel by absorbed radiation makes forced cooling necessary in many operations. Oxygen must be exluded from all operations where the fuel is exposed. Equipment must be designed for remote maintenance and component replacement within the limitation of available manipulators. The EBR-II fuel consisted of fissium alloy pins sodium bonded in stainless steel tubes. Precision casting was chosen as the basis for refabricating the fuel pins. Remote controlled equipment was developed to cast, assemble, and inspect the EBR-II fuel elements. Radiation resistant, plug-in machine components were developed to give reasonable life expectancy and to allow remote maintenance and replacement.