ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
NRC approves subsequent license renewal for Oconee
All three units at the Duke Energy’s Oconee nuclear power plant in South Carolina are now licensed to operate for an additional 20 years.
R. Gwin, D. W. Magnuson
Nuclear Science and Engineering | Volume 12 | Number 3 | March 1962 | Pages 364-380
Technical Paper | doi.org/10.13182/NSE62-A28087
Articles are hosted by Taylor and Francis Online.
The thermal value of eta for U233 and U235 has been determined in a series of experiments on unreflected homogeneous aqueous solutions of the two isotopes. These experiments also yield a value for the neutron age and the limiting concentrations of the fissile isotope in the aqueous solutions for infinite volumes. Auxiliary experiments, establishing limits of error, testing certain aspects of the theoretical model employed, and experimentally determining the parameters in the critical equation, have been performed. Experiments performed with 27-in.- and 48-in.-diam spheres, and 5-ft- and 9-ft-diam cylinders have yielded consistent values of eta. Measurements of the nonleakage probability in cylindrical geometry have given values consistent with those predicted by a two-group model in which the theoretical value of the age was used. Within the experimental error no differences were found in the ages of fission neutrons for U233 and U235. The average thermal values of eta determined are: for U233, 2.292 ± 0.015 and for U235, 2.076 ± 0.015. The 2200 meters/sec values are the same since the g-factors for eta are unity. The value of the neutron age to the indium resonance energy for U235 fission neutrons in water was found to be 25.6 ± 1.3 cm2. The minimum U233 and U235 critical densities for these nitrate solutions were found to be 11.25 ± 0.10 gm/liter and 12.30 ± 0.10 gm/liter for U233 and U235, respectively.